MULTISPAN

Guide to operate Temperature controller.

Model No: - UTC-211 P, Universal Input Temperature controller.

1. Specifications:

1. Micro Controller Based. Single Display.

2. Dimension: Size: 72 x 72 x 120 mm.

Panel Cutout: 68 x 68 mm.

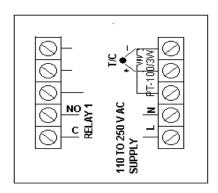
- 3. Supply: 110 to 250 V AC(SMPS).
- 4. Sensor: 'J, K, RTD' Type Thermocouple.
- 5. Range: -99.9 TO 400.0 °C For RTD Type ,DP Selectable 0.0 TO 600.0 °C For J Type , DP Selectable

0-1200°C For K Type, DP not selectable.

- 6. Output: 1 Relay with 1 C/O, 230V AC, 5A.
- 7. Control Action: PID.

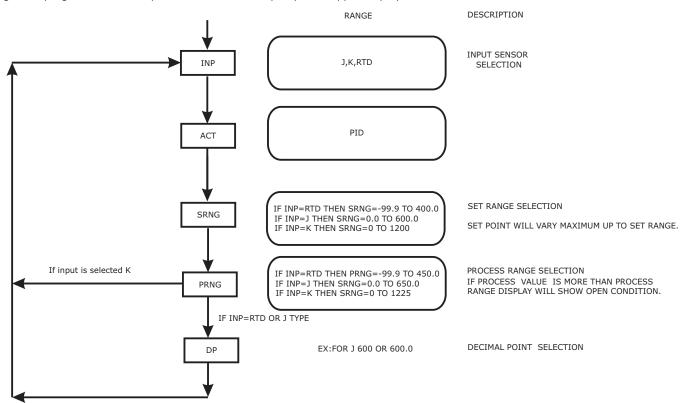
2. Displays:

- (A) **Display 1:** Upper 4-Digit Display in RED colour .
- (B) **LED's:** A small Red LED on left hand side near SV.



These front keys can be used to see and change current values of parameters given in the flow chart.

4. CONNECTION DIAGRAM:



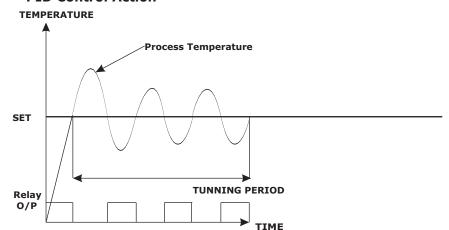


KEY MENU FLOW CHART FOR UTC-211-P

(1) PROGRAM MENU

To go into program menu first press and hold set & up key until upper display show INP.

If you want to start tuning the heater behavior make AUTO in 'YES' mode so tuning will start checking system behavior.


After 3 on-off cycles it will automatically set PC,IC,DC & CT.

Proportional Constant: To give proportional output according to the set point, Due to PC proportional band =100/PC , at PV<= 100/PC, O/P=100%, AT PV>=SV O/P=0%.

 $\underline{\textbf{Integration Constant:}} \\ \text{To compensate offset between process} \\ \text{value \& set value.} \\$

Control Action Theory

PID Control Action

Effects of Increasing Parameters				
Parameter	Rise Time	Overshoot	Settling Time	Steady State Error
PC (Proportional Constant)	Decrease	Increase	Small Change	Decrease
IC (Integral Constant)	Decrease	Increase	Increase	Eliminate
DC (Derivative Constant)	Small Change	Decrease	Decrease	None

IC (INTEGRAL CONSTANT):

When PB is set and PV is stable in desired range, but offset is present between set value & process value then increase IC & set it according to system response. If system response is slower for heating & cooling action then set IC to higher value, about 100 & more and if system response is faster then set IC to lower value near about 10 & more.

DC (DERIVATIVE CONSTANT):

If system behavior is not constant for PV to be increase or decreased .Means system behave random due to random heat consumption /heat loss or due to externally generated heat in system.

Derivative constant is to be set according to the variation noticed in PV. If variations due to heat loss / generated are more set DC at higher value and if variations is less set DC to lower value.